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Abstract

The applicability of semi-active control for seismic protection of elevated highway bridges is investigated through comparison
with active and passive systems. A bridge pier–bearing–deck structure is modeled as a linear two-degree-of-freedom system and
three design goals are studied: reduction of pier response, reduction of bearing response and reduction of both responses. The
passive system is assumed to have a high-damping rubber bearing and linear quadratic regulator (LQR) control is used for the
active system. Normalized peak displacements are used to optimize bearing damping and LQR parameters. LQR-based clipped
optimal control is used to command a magneto-rheological (MR) damper in semi-active control, where the MR damper is designed
according to deterministic analysis of the active system. Numerical simulations show that semi-active control can reach active
control performance if the design goal is to reduce bearing response, while it shows similar behavior to the passive system if the
design goal is to reduce pier response. All strategies showed similar performance for the reduction of both responses.  2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the past decades there has been extensive
research on structural control concepts and technologies,
which has led to successful applications to civil engin-
eering structures. Each control strategy has its merits and
disadvantages depending on the nature of the problem,
purpose, structure, devices used, etc. For example, rub-
ber bearings became very popular for seismic isolation
of bridges and active systems were utilized in high-rise
buildings to reduce wind-induced vibration.

Semi-active control for seismic protection of struc-
tures received special attention after the development of
a new device called the magneto-rheological (MR)
damper. Experimental and numerical studies show that
semi-active control with MR dampers increases the seis-
mic performance of a structure considerably, and in
some cases it surpasses the active performance [1,2].
However, these studies were mainly on frame-type struc-
tures. Although some experimental and numerical stud-
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ies of semi-active control of highway bridges are
reported [3,4], control of bridges using MR dampers has
not been reported yet. These new strategies should be
investigated for highway bridges to increase seismic per-
formance.

The starting point of the investigation of new semi-
active strategies for bridges is modeling of the structural
system. A typical elevated highway bridge consists of
decks, bearings and piers. The easiest, yet most realistic
model of a bridge deck–bearing–pier system for numeri-
cal analysis is to model the deck as a rigid body and
the piers as single-degree-of-freedom (SDOF) systems
where the whole mass is lumped at the top of the pier.
A model with two degrees-of-freedom (DOFs) may be
used for the passive system with rubber bearings if the
girder is continuous with one pier and one bearing or
several piers and bearings with same characteristics, as
shown in Fig. 1(a), and piers are excited by the same
ground motion. This model can also be used for active
and semi-active systems if the control devices are
attached to the system as shown in Fig. 1(b) and com-
manded by the same control law. Although it is simple,
a two-DOF system is quite informative for an initial
study and is used in this paper.

Based on the two-DOF model, passive, active and
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Fig. 1. Model of bridge: (a) two-DOF model; (b) placement of active
and semi-active devices.

semi-active systems should be designed for optimal per-
formances. However, design of these structures is not
trivial owing to the dynamical characteristics of the
bridge system: i.e., control forces that cannot be trans-
ferred to the ground but serve as internal force between
deck and pier and unevenly distributed structural masses.
Research on optimal design of two-DOF systems, anal-
ogous to the bridge model for free vibration or different
types of excitation, comprises quite large field of study
since several types of structure can be modeled as a two-
DOF system. See, for example, Fujino and Abé [5] for
a number of analytical works on optimization. Similar
analytical methods can be employed for the two-DOF
bridge model but they lack practicality for the analysis
of higher DOF systems. In this case, numerical evalu-
ation of a performance criterion is more convenient for
an initial design. This criterion is generally based on
maximum deformations since they are the most
important indicators for the performance of systems
excited by near-field earthquakes. Another tool used fre-
quently for the evaluation of performance is root mean
square (RMS) response. For example, Skinner et al. [6]
used RMS responses to find the peak responses of low-
mass secondary systems. Later, Abé and Fujino [7]
defined a normalized peak response quantity using a
similar approach as an indication of peak responses and
employed it for optimal design of bridge bearings of a
two-DOF bridge model. Such an approach is quite useful

for an initial optimization study since it does not require
extensive analytical and numerical work.

This paper investigates the applicability of semi-active
control of elevated highway bridges for seismic protec-
tion by comparing the performances of optimally
designed two-DOF passive, active and semi-active
bridge models. In the first part of the paper, the concept
of normalized peak response is defined and used to
optimize the passive system, where the passive device
is assumed to be a high-damping rubber bearing with
linear stiffness and damping. Full state feedback linear
quadratic regulator (LQR) control strategy is used for
the active system. The main design parameter, known as
Q matrix, is determined first, defining it as a function of
a single parameter and then optimizing this parameter
using normalized peak responses. An MR damper is
used as the semi-active device and clipped optimal con-
trol is utilized to simulate the optimal control force
obtained by the LQR algorithm. A simple method, which
is based on maximum optimal control force, maximum
damper displacements and velocities obtained from
deterministic earthquake analysis of the active system,
is used to design the MR damper. Each of the control
systems is designed for three cases: reduction of pier
response, reduction of bearing response and finally
reduction of both responses. These systems are tested
using three sets of ground acceleration data, and per-
formances are compared using a performance index
based on the maximum drifts together with an uncon-
trolled system with a low-damping bearing. Tabular and
graphical results are given for all analyses.

2. Concept of normalized peak response

Consider a linear n-DOF system excited by stationary
Gaussian white noise of duration t. Mean maximum
responses can be expressed as

R̄i
t�pisi, (1)

where R̄i
t and si are the mean maximum response and

root mean square response of DOF i, and pi is a peak
factor, which can be defined in terms of spectral
moments and duration t [8]. Now consider an SDOF
system that is excited by the same random signal. An
expression similar to Eq. (1) can be given in terms of
another factor and the mean maximum response of the
SDOF system as

R̄i
t�giR̄NS (2)

where R̄NS is the mean maximum response of the SDOF
system. Expressing gi in terms of mean maximum
responses and using Eq. (1), one obtains

gi�
R̄i
t

R̄NS

�
pisi

pNSsNS

�pi
rsi

r, (3)
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where pi
r and si

r are the ratios of peak factors and RMS
responses, respectively. In this form, gi represents a nor-
malized quantity and hence is called a normalized peak
response by Abé and Fujino [7]. Following this defi-
nition, SDOF system used above is called a normaliz-
ation system in this paper.

Now consider a system to be normalized. It is useful
to use a normalization system where the approximation
pi

r�1 can be used, which reduces Eq. (3) to

gi�si
r. (4)

Such an approximation is not always valid since pi
r is a

function of peak factors of both of the systems. It has
been shown by Der Kiureghian [9] that the ratio of peak
factors of a classically damped system to peak factors
of its modal responses is around unity. This statement
is not valid if the frequency of the highest mode is con-
siderably small and the ratios of the modal frequencies
are considerably large, which is not the case for most of
the engineering structures modeled as finite-DOF sys-
tems. Comparing the modal combination rules for
maximum responses of classically [9] and nonclassically
[10] damped systems, one can easily show that this ratio
is also around unity for nonclassically damped systems,
which is also stated by Igusa and Der Kiureghian [10].
Hence, pi

r of a classically or nonclassically damped sys-
tem, which is normalized by an SDOF system, can take
the values of possible ratios of peak factors of an SDOF
system with damping ratio xNS and natural frequency
wNS, where xNS and wNS are some acceptable values. Fig.
2 shows the change in maximum values of pi

r with
respect to xNS for a set of mean zero crossings. Fre-
quency values are also given for an earthquake duration
of 100 s. As can be seen from this plot, this ratio may
reach a value of 1.8 for some cases. Hence to use the
approximation, an arbitrary normalization system cannot
be chosen, but it should satisfy the following condition:

1�e�pi
r{xNS, wNS}�1�e, (5)

Fig. 2. Maximum peak factor ratios of an SDOF system.

where e is an acceptable error. An SDOF system having
a natural frequency between the highest and lowest
modal frequencies of the original system will satisfy this
condition with a slightly large value of e, but will give
reasonable results if the main purpose is to observe the
change of the maximum response and not to obtain it
numerically. In the latter case, an SDOF system that sat-
isfies condition (5) for a smaller e should be chosen. If
pi

r�1 can be used, the final form of maximum responses
will be

R̄i
t�si

rR̄NS. (6)

This equation is in the form used by Skinner et al. [6].
The merit of Eq. (6) is the fact that the peak factor and
RMS value of an SDOF normalization system are easy
to compute for random excitation. In the following sec-
tions of the study, gi and si

r are used for optimization of
the passive and active systems, which may be considered
as examples of application of the method.

2.1. Computation of RMS of responses

Consider a system that is represented in its state space
form as follows:

ż�Az�Bu, (7)

where z is the state vector, A and B are the system matr-
ices, u is the external excitation vector and the dot rep-
resents time derivation. Covariance matrix of z satisfies
the following differential equation:

Ṡz�ASz�SzAT�BQ(t)BT, (8)

where Sz=E[zzT] and is the covariance matrix of z, and
Q(t) is the covariance matrix of u. If u is a stationary
Gaussian white noise with zero mean and if its spectral
density G(w)=G0, Q(t) becomes a constant diagonal
matrix and Eq. (8) reduces to following Lyapunov equ-
ation:

0�ASz�SzAT�BQBT. (9)

If the Fourier transform of a continuous function f(t) is
defined as

F(w)� �
�

��

f(t) e−iwt dt, (10)

the diagonals of Q are equal to G0. Diagonal terms of
Sz are mean square values of the state vector and solution
of the equation can be used to estimate the RMS values.
RMS values of specific quantities other than state vari-
ables can be found if these quantities can be expressed
as a linear combination of the state vector as

y�Hz. (11)

The covariance matrix of y can be found as
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Sy�E[yyT]�HSzHT, (12)

where the diagonal terms of Sy are mean square values
of y.

3. Two-DOF modeling of the bridge and
performance criterion

The bridge structures shown in Fig. 1 are modeled as
a two-DOF system. The general form of the equation of
motion for this system with or without a control device is

Mẍ�Cẍ�Kx�sFc��Mrẍg, (13)

where M is the mass matrix; C is the damping matrix;
K is the stiffness matrix; s is the location vector for con-
trol force, Fc; x is the displacement vector; r is the
influence vector; and ẍg is the ground acceleration. The
state space representation of the equation of motion can
be written as

ż�Az�BFc�Gẍg, (14)

where z is the state vector and A, B and G are the system
matrices. If the control force is a constant gain linear
feedback force such as

Fc��Kcz, (15)

where Kc is the gain matrix of dimensions 1×4, Eq. (14)
reduces to

ż�Ãz�Gẍg, (16)

where

Ã�A�BKc; (17)

the state vector and the system matrices are

z��x

v
�, A��0 I

−M−1K −M−1C
�, (18)

B��0

−M−1s
� and G��0

−r
�,

in which

M��m1 0

0 m2
�, C��c1�c2 −c2

−c2 c2
�,

K��k1�k2 −k2

−k2 k2
�, s��−1

1
�, r��1

1
�, (19)

x��x1

x2
� and v�ẋ.

In the above, m1 and m2 are the lumped masses of the
pier and deck, respectively; c1 and c2 are the damping
constants of the pier and bearing, respectively; k1 and
k2 are the stiffness constants of the pier and bearing,

respectively; and x1 and x2 are the pier and deck dis-
placements relative to the ground, respectively. In pass-
ive control, Fc is taken as zero.

For simulation purposes, mass ratio, damping ratio
and the natural period of the pier are set to
m(=m2/m1)=5, 5% and 0.5 s, respectively, which are typi-
cal values for elevated highway bridges. Then, k1 and c1

are calculated representing the pier as an SDOF system
with mass m1, stiffness k1 and damping constant c1. The
damping ratio and natural frequency of the correspond-
ing system are designated as x1 and wpier. Similarly, the
natural period and the damping ratio of the bearing are
calculated considering an SDOF system with parameters
m2, k2 and c2, and the corresponding damping ratio x2

and natural frequency wbearing are found. In the numerical
simulations, the mass of the pier is taken as 100 tons
and other parameters are calculated accordingly.

To compare the efficiency of the control strategies, a
performance criterion is defined based on the maximum
drifts as follows:

J�[{axmax
1 }2�{b(x2�x1)max}2]1/2. (20)

The parameters a and b are defined according to the rela-
tive performances of the pier and deck. In this study,
three design goals are studied; based on these goals,
three sets of parameters are defined as in Table 1.

4. Passive system

In this section, first normalized displacements are used
to optimize the passive system. Two types of normaliz-
ation system are considered and random vibration analy-
sis results are compared with earthquake analyses. The
first system is an SDOF and the second is a classically
damped two-DOF system. Then, according to the results
obtained, three passive systems are designed for three
design goals.

4.1. SDOF case

The SDOF system used by Abé and Fujino [7] is used
as the first normalization system where SDOF represents
the bridge system when the deck is not isolated but fixed.
Hence gi represents the reduction ratio of response by
the passive device. RMS of an SDOF system under
Gaussian white noise ground acceleration with zero

Table 1
Performance index parameters

Design Main design goal a b

D1 Minimize pier response 1 0
D2 Minimize bearing response 0 1
D3 Minimize both pier and bearing responses 1 1
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mean and spectral density G0 can be found easily using
Eq. (9) as

sNS�
G0

4xNSw3
NS

. (21)

4.2. Two-DOF case

Instead of the SDOF system given in the previous sec-
tion, a two-DOF or another SDOF system can be
designed so that Eq. (5) is valid for a smaller value of
e. In this section a two-DOF system is studied, which
makes the SDOF case straightforward. Final normalized
displacements become

g1�
R̄1
t

R̄1
NS

�
p1s1

p1
NSs1

NS

�p1
rs1

r and g2�
R̄2
t

R̄2
NS

�
p2s2

p2
NSs2

NS

(22)

�p2
rs2

r .

Mass and stiffness matrices of the normalization system
are taken to be the same as for the original system but
the damping is assumed to be Rayleigh damping. The
bearing is assumed to have an optimal stiffness found
for a similar two-DOF system by Fujino and Abé [5],
and is estimated by the relation

wbearing

wpier
�

�1+(m/2)

1+m
. (23)

Modal damping ratios of the normalization system are
investigated so that pi

r�1 can be used. Peak factors can
be found by dividing maximum responses by RMS
values. In this case, maximum values can be calculated
by use of the combination rule given by Der Kiureghian
[9]. A similar combination rule or Lyapunov equation
can be used to find RMS responses. Average ratios of
the peak factors of the normalization system to itself are
investigated over a range (0.01, 0.50) of modal damping
ratios of the normalization system, so that averages are
in between (1.0005, 0.9995). Fig. 3 shows the values of
the modal damping ratios where the above conditions
are satisfied for the peak factor ratios of both DOFs.
Hence a two-DOF normalization system with modal
damping ratios of 0.18 for the first mode and 0.13 for
the second mode are used for the analysis. Although the
main design parameters are stiffness and the damping of
the bearing, in this section stiffness is fixed to Eq. (23)
to enable easy comparison of the results with the earth-
quake analysis.

Normalized displacements, gi, are obtained for two
normalizations systems under Gaussian white noise for
a set of damping ratios of the bearing. These normalized
displacements are designated as giRV. Two sets of gi are
calculated for three earthquakes: El Centro, Northridge

Fig. 3. Determination of modal damping ratios for �mean(pr)��
0.0005.

and Kobe. One set is found using the RMS values and
the other set is found using maximum responses. They
are designated as giRMS and giMAX, respectively. Then,
they are compared with giRV through figures. In Fig. 4,
the normalized displacements are found using RMS
values for both earthquakes and the random signal. In
Fig. 5 these values are found using maximum values for
earthquakes and RMS values for the random signal. The
efficiency of Eq. (6) is investigated by comparing the
maximum displacements obtained from this equation
with the actual maximum values obtained from earth-
quake analysis as in Fig. 6.

From these figures strict generalizations cannot be
extracted but it can be easily observed that giRV shows
the trends of giRMS and giMAX for both of the normalization
systems, while the two-DOF normalization system can
predict giRMS better. Hence, giRV can be used for optimiz-
ation purposes since the characteristics of the normaliz-
ation system used herein are constants. Also it is
observed that with this form, maximum responses found
by random vibration analysis and normalized displace-
ments cannot predict actual maximum responses
efficiently. This is mainly due to the constant character-
istics of the normalization system.

The most important observation related to the per-
formance of the bridge is that pier responses do not
decrease continually with the increase in bearing damp-
ing. This is more apparent for the Kobe and Northridge
earthquakes. Both maximum and normalized maximum
displacements give minimum pier responses for 0.3�
x2�0.5. Also it is observed that bearing drifts decrease
with the increase in bearing damping.

Numerical simulations up to this point are carried out
basically for investigation of the validity of the concept
of normalized displacements fixing bearing stiffness.
However, for a full optimization, the stiffness of the
bearing should also be investigated. Such a study was
done by Abé et al. [11], and shows that a continuous
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Fig. 4. Normalized peak responses when RMS values are used.

increase in bearing stiffness causes a continuous increase
in pier response but a continuous decrease in bearing
response. Hence, different stiffnesses should be used for
different design goals, which makes the problem more
complex. Instead, the same stiffness obtained from Eq.
(23) is used for the three designs and three control stra-
tegies in this study. Final damping ratios of the bearing
are chosen as 0.4, 1.0 and 0.7 for designs D1, D2 and
D3, respectively.

5. Active system

The LQR control strategy is used for active and semi-
active control. The LQR problem is defined as the mini-
mization of a quadratic objective function given by

J��
T

0

(zTQz�uTRu) dt (24)

with respect to u, subjected to the state equation of a
system given by

ż�Az�Bu�f, (25)

where z is a 2n×1 state vector, u is a k×1 control force
vector, f is the external disturbance vector, A is a
2n×2n system matrix, B is a 2n×k matrix defining the
location of control force. Q and R are 2n×2n and k×k
positive definite weight matrices and are determined
according to the design goal and constraints on control
forces. Assuming that E[f]=0, minimization of Eq. (24)
under Eq. (25) when T→� gives the control force as

u��R−1BTPz, (26)

where P is the solution of the well-known Ricatti equ-
ation given by

ATP�PA�Q�PBR−1BTP�0. (27)

Q and R are the main design parameters of the active
controller and extensive study should be carried out to
determine the values of these parameters for better per-
formance of the active system, which is beyond the
scope of this study. Here, Q matrix is represented by a
parameter r, based on the energy of the SDOF systems
of mass m1 and m2 defined before such that
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Fig. 5. Normalized peak responses when maximum values for earthquakes are used.

Fig. 6. Comparison of maximum responses.

zTQz�r�1
2

k1(x1)2�
1
2

m1(v1)2���1
2
k2(x2�x1)2 (28)

�
1
2
m2(v2�v1)2�.

In this equation, the term in the first bracket represents
the energy of the pier and that in the second bracket
represents the energy of the deck and bearing; parameter
r defines the relative importance of pier and bearing
responses. A larger value of r is expected to decrease
the pier response and vice versa. Eq. (28) yields Q as

Q(r)�	
1
2

(rk1+k2) −
1
2
(k2) 0 0

−
1
2
(k2)

1
2

(k2) 0 0

0 0
1
2

(rm1+m2) −
1
2

(m2)

0 0 −
1
2

(m2)
1
2
(m2)


. (29)

It is assumed that R can take any value, hence active



288 B. Erkus et al. / Engineering Structures 24 (2002) 281–293

control design reduces to the problem of determination
of parameter r for the three design goals.

The effect of r on the normalized displacements,
which are computed using the two-DOF normalization
system obtained in the previous sections, is shown in
Fig. 7. R is taken as 1×10−12 after some trial runs and
normalized displacements are obtained using a two-DOF
normalization system. Also, the normalized displace-
ments for three earthquakes are given. As can be seen
from this plot, normalized displacements obtained from
random vibration analyses can predict the trend in
behavior very well and hence can be used for optimiz-
ation. The differences between the EQ and random
responses may be attributed to the normalized system,
which was chosen for the passive system but not for the
active system. Finally, three r values are chosen as 1000,
0.1 and 10 for designs D1, D2 and D3, respectively.

6. Semi-active control

In this section, the MR damper is chosen as semi-
active device and the voltage of the device is com-
manded by the clipped optimal control strategy proposed
by Dyke et al. [1] to simulate the control force obtained
from the LQR control strategy. The equation of motion
of the system is same as Eq. (13) except that Fc is
replaced by Fd, where Fd is damper force. According to
clipped optimal control, the voltage applied to the MR
damper changes as follows:

vt�vmaxH({Ft
c�Ft−1

d }Ft−1
d ), (30)

where vt is the voltage applied at time t, vmax is the
maximum voltage that can be applied to the MR
damper, Ft

c and Ft−1
d are the optimal control force and

damper force at time t and t�1, respectively and H(·) is
the Heaviside step function. Optimal control force is

Fig. 7. Normalized peak responses of active system.

obtained with Eq. (26) using the state vector obtained
during semi-active simulation.

The MR damper model proposed by Spencer et al.
[12], which is based on the Bouc–Wen model, is used
(Fig. 8). The governing equations of the model are

Fd�az�c0(ẋ�ẏ)�k0(x�y)�k1(x�x0), (31)

ż��g|ẋ�ẏ|z|z|n−1�b(ẋ�ẏ)|z|n�A(ẋ�ẏ), (32)

a�aa�abu, (33a)

c1�c1a�c1bu, (33b)

c0�c0a�c0bu (33c)

and

u̇��h(u�v), (34)

where x is the displacement of the damper, Fd is the
force generated by the damper and v is the voltage
applied to the damper. Other parameters will be given
later.

The model defined above is based on a prototype
model of the MR damper, which cannot be used in real
structures. One way to incorporate this model into the
two-DOF bridge system is to modify the parameters of
the MR damper, multiplying the damping, stiffness and
hysteretic constants of the model by a modification fac-
tor, MF, to magnify the damper force. Practically this is
same as using MF dampers. However, this factor is not
arbitrary and should be determined so that the system
behaves optimally. Normalized peak displacements can
be used to find the optimal MFs. To find the mean square
responses, equivalent linearization techniques [13,14]
should be used to represent the damper model in the state
space analysis. In this paper MF is determined using a
simple method based on the deterministic analysis of the
active system instead of random vibration analysis of
the semi-active system. This method can be summarized
as follows.

Fig. 8. Model of MR damper (Spencer et al. [12]).
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Table 2
Design values of MF

(x2�x1)max
act (cm) (v2�v1)max

act (cm/s) Fmax
c (kN) w (rad/s) Fmax

d (kN) MF Average MF

D1 El Centro 12.65 33.94 845.8 2.68 2.24 377.7 394.8
Kobe 20.87 87.84 1404.9 4.21 3.74 375.8
Northridge 24.04 80.51 1560.5 3.35 3.62 430.9

D2 El Centro 1.94 10.30 1089.9 5.31 1.45 750.6 1264.0
Kobe 5.65 35.13 3611.5 6.22 2.15 1681.2
Northridge 4.16 18.18 2291.7 4.37 1.68 1360.3

D3 El Centro 7.06 26.57 570.3 3.76 1.94 293.2 410.3
Kobe 12.97 85.55 1610.4 6.60 3.56 452.7
Northridge 16.5 71.90 1580.3 4.36 3.26 485.0

1. Find the maximum optimal control force, maximum
bearing displacement and maximum bearing velocity
of the active system; i.e., Fmax

c , (x2�x1)max
act and (v2�

v1)max
act .

2. Apply a sinusoidal excitation with amplitude and fre-
quency given by

x0�(x2�x1)max
act (35)

and

wd�
(v2−v1)max

act

(x2−x1)max
act

, (36)

respectively, to the original damper model and find
the maximum damper force, Fmax

d .
3. MF is given by

MF�
Fmax

c

Fmax
d

. (37)

Table 2 gives the tabular results of the method for the
three designs. Average values of MF for the three earth-
quakes are used to find the final MF. The final form of
damper parameters is given in Table 3.

Table 3
Modified MR damper parameters

Parameter Value

c0a (N s/cm) 21MF
c0b (N s/cm) 3.5MF
k0 (N/cm) 46.9MF
c1a (N s/cm) 283MF
c1b (N s/cm V) 2.95MF
k1 (N/cm) 5.0MF
x0 (cm) 14.3
aa (N/cm) 140MF
ab (N/cm V) 695MF
g (cm�2) 363
b (cm�2) 363
A 301
n 2
h (s�1) 190

7. Numerical simulations and discussion of results

The performances of the controlled systems are com-
pared using ground motion data from three earthquakes:
El Centro, Kobe and Northridge. Also, an uncontrolled
system with a low-damping bearing is analyzed for com-
parison purposes. Characteristics of the systems are sum-
marized in Table 4.

Tables 5 and 6 give the tabular results of performance
indices, where lower values show an increased perform-
ance. Fig. 9 shows the simulation results for the three
designs. As can be seen from the figure and tables, fully
active control decreases the pier responses considerably
in the first design while it increases the deck responses.
The semi-active system cannot simulate active behavior
and shows a similar response to the passive system. In
the second design, where the goal is reduce the bearing
response, the active and semi-active systems show better
performance. In fact, their response histories are almost
identical, which means that the semi-active system can
mimic the active system efficiently. However, the
decrease in bearing responses cause a considerable
increase in the pier responses. The main reason for the
increased responses of the pier is the transfer of control
force to the other mass but not to a fixed point such as
ground. The response histories of the systems, where the

Table 4
Summary of the systems compared

Uncontrolled Passive c2 Semi-active
Active r

c2 (kN s/m) (kN s/m) MF

D1 196.0 1468 1000 394.8
D2 3920 0.1 1264.0
D3 2744 10 410.3
m1 (tons) 100
m2 (tons) 500
k1 (kN/m) 15,791
k2 (kN/m) 7685
c1 (kN s/m) 125.6
c2 (kN s/m) 0 0
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Table 5
Performance indices of the controlled systems

D1 (cm) D2 (cm) D3 (cm)

Semi- Semi- Semi-
Uncontrolled Passive Active Uncontrolled Passive Active Uncontrolled Passive Active

active active active

El Centro 6.64 5.22 1.21 4.97 13.75 4.40 1.94 1.90 15.28 7.63 8.10 7.81
Northridge 16.7 11.89 3.29 15.69 29.91 9.95 5.65 6.04 34.25 18.60 16.51 21.20
Kobe 18.03 11.30 3.14 12.11 34.89 9.95 4.16 3.99 39.27 17.71 18.73 18.70

Table 6
Percentage reduction in the performance indices with respect to the uncontrolled system

D1 (%) D2 (%) D3 (%)

Passive Active Semi-active Passive Active Semi-active Passive Active Semi-active

El Centro 21 82 25 68 86 86 50 47 49
Northridge 29 80 6 67 81 80 46 52 38
Kobe 37 83 33 71 88 89 55 52 52

Fig. 9. Response–time histories of (a) D1, (b) D2 and (c) D3.



291B. Erkus et al. / Engineering Structures 24 (2002) 281–293

Fig. 9. (continued)

design goal is to reduce both drifts, are almost same. In
this case the semi-active system mimics the active sys-
tem but not efficiently as in the second design. Hence,
the active control design should be improved for better
performance of the semi-active system for this design.

In addition to response histories, comparison of the
optimal control forces and damper forces will aid in
understanding the behavior. Fig. 10 shows the damper
and optimal control forces. Relations between the opti-
mal control force, damper velocity and displacement are
also presented. In the first design, the damper cannot
simulate the optimal control force and the damper velo-
cities do not occur in the direction of the optimal control
force, rather they are arbitrary. Also the damper dis-
placements do not show a pattern. However, this is not
the case in the second design. Damper forces can simu-
late the active control force efficiently. The velocities
occur in the direction of the optimal control force and
the relation between optimal control forces and damper
displacements shows an elliptic pattern, which means
that the damper dissipates energy like a linear viscous
damping. Another observation is that huge damper
forces occur in the Kobe simulations, although this is
not the case for the other earthquakes: for example, the
damper forces are same as control forces for the
Northridge earthquake. Hence the MR damper design is

well-suited for this latter earthquake but not for Kobe.
Also, although the maximum damper forces are very
large, the damper is able to simulate the control force,
which means that over-design of damper does not affect
the damper performance. In the third design, these
relations are similar to the second design but they are
somewhat distorted. Also, it is observed that the control
forces needed in the first and third design are lower than
the forces in the second design since the second design
aims to decrease drift associated with the damper and
bearing.

The above observations can also be explained using
modal responses. In a two-DOF bridge system, the first
mode dominates the responses. Now consider the control
forces needed for the first and second designs. The direc-
tions of these forces are shown in Fig. 11. Also shown
in this figure is the direction of forces that can be pro-
duced by the damper in this mode. As can be seen, the
damper is effective in the second design due to the con-
trol force direction. Hence, it may be beneficial to ana-
lyze how the damper force direction changes for several
values of r. For this purpose an index that shows the
percentage occurrence of v2�v1 in the direction of con-
trol force is found during the active control simulation.
Although v2�v1 does not show the damper force direc-
tion exactly, it can be used as an indicator. Fig. 7 is
regenerated showing this index and Fig. 12 is obtained.
In this figure, instead of the normalized active response
itself, the percentage increase in the normalized active
response with respect to the normalized passive response
is shown. The passive system used in these calculations
is chosen to be the system used in D3. As can be seen,
for higher values of r, v2�v1 occurs less in the direction
of the control force. This may be an indication of the
effectiveness of the damper. Hence the shaded area
shows the region where the semi-active device is
expected to be more effective than the passive system.

8. Conclusions

Semi-active control is investigated for seismic protec-
tion of elevated highway bridges. An MR damper with
LQR-based clipped optimal control is used in semi-
active control and its performance is compared with that
of optimally designed passive and active systems for
three design goals. The following conclusions can be
drawn.

1. In passive control, a continuous increase in the damp-
ing of the bearing causes a continuous decrease in the
responses of both pier and deck until the damping
reaches a specific value. After this value, the pier
response increases while the deck response continues
to decrease.

2. Optimally designed active systems decrease the pier
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Fig. 10. Comparison of optimal control forces of active simulation and damper forces, damper velocities and damper displacements of semi-
active simulation: (a) D1; (b) D2; (c) D3.

Fig. 10. (continued)

response or the deck response considerably. However,
the system designed to decrease both responses does
not show better performance than the passive system.
Hence, a separate study should be carried out to
obtain better active performance for this design goal.

3. The semi-active system shows similar performance to
the passive system when the design goal is to reduce
pier response. When the design goal is to reduce deck
responses, it reaches the active system performance,

Fig. 11. Direction of control forces and damper forces in the first
mode.

and has almost the same time–response history as the
active system. It shows similar performance to the
active system in the third design, where the aim is to
reduce both responses, but does not improve the pass-
ive system since the active system does not cause
improvement. These results are devoted to semi-
active characteristics of the MR damper.
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Fig. 12. Percentage increase in the active normalized responses and
direction coincidence.
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